Sains Malaysiana 54(4)(2025): 1187-1207
http://doi.org/10.17576/jsm-2025-5404-18
Optimising Variable Sample Size
Chart through Median Run Length
with Estimated Process Parameters
(Mengoptimumkan Saiz Sampel
Pemboleh Ubah Carta
melalui Panjang Larian Median
dengan Parameter Proses Anggaran)
WEI LIN TEOH1,2,*, KAI LE GOH1,
ZHI LIN CHONG3, XINYING CHEW4, MING HA LEE5 &
KHAI WAH KHAW6
1School of Mathematical and Computer Sciences, Heriot-Watt University
Malaysia, 62200 Putrajaya, Malaysia
2International Chair in Data Science & Explainable Artificial
Intelligence, International Research Institute for Artificial Intelligence and
Data Science, Dong A University, Danang, Vietnam
3Department of Electronic Engineering, Faculty of Engineering and Green
Technology, Universiti Tunku Abdul Rahman, 31900 Kampar, Perak, Malaysia
4School of Computer Science, Universiti Sains Malaysia, 11800 Gelugor, Pulau Pinang, Malaysia
5Faculty of Engineering, Computing and Science, Swinburne University of
Technology Sarawak Campus, 93350 Kuching, Sarawak, Malaysia
6School of Management, Universiti Sains Malaysia, 11800 Gelugor, Pulau Pinang, Malaysia
Diserahkan: 30 Ogos 2024/Diterima: 18 Disember 2024
Abstract
The classic charting procedures for designing the estimated process
parameters-based variable sample size (VSS)
chart rely on the average run length (ARL)
criterion. Nevertheless, variations in the number of Phase-I samples and sample
size, as well as the magnitude of the process mean shift affect the skewness of
the run-length distribution for a control chart. Hence, we claim that the ARL can
be a misleading metric when adopted in the estimated process parameters-based control
charts. Instead, examining percentiles of the run-length distribution, which
focus on the run-length behaviour, are more realistic and intuitive. From this
point of view, this paper aims to develop two new optimal VSS
charts using estimated process parameters, by
minimising the (i) median run length (MRL) and (ii)
expected MRL criteria, for known and unknown shift-size cases, respectively. Besides,
the 5th and 95th percentiles are computed to closely
examine the variability of the run length. In this paper, two VSS schemes that
involve estimated process parameters are investigated extensively, i.e., the
first sample size can be either small or large. Various practically manageable
Phase-I sample sizes and magnitudes of process mean shift are implemented in
the optimal design of the proposed charts. The results ascertain that the
proposed optimal VSS
charts based on estimated process parameters
not only provide a comprehensible interpretation for quality practitioners, but
also give a low false-alarm rate. The proposed optimal charts are illustrated using
real data from a wafer substrate manufacturing company.
Keywords: median run length; optimal design; percentile of the
run-length distribution; process parameter estimation; variable sample size
chart
Abstrak
Prosedur carta klasik untuk mereka carta
bersaiz sampel berubah-ubah (VSS) berdasarkan anggaran parameter
proses adalah bergantung pada kriteria panjang larian purata (ARL). Namun begitu, variasi dalam bilangan sampel Fasa-I dan saiz sampel, serta magnitud anjakan purata proses mempengaruhi kepencongan taburan panjang larian untuk carta kawalan. Oleh itu, kami berpendapat bahawa ARL merupakan metrik yang mengelirukan apabila digunakan dalam carta kawalan berdasarkan parameter proses yang dianggarkan. Sebaliknya, pemeriksaan percentil taburan panjang larian yang memberi tumpuan kepada tingkah laku panjang larian adalah lebih realistik dan intuitif. Dari sudut pandangan ini, kajian ini bertujuan untuk mencipta dua reka bentuk optimum baharu bagi carta VSS
berdasarkan parameter proses yang dianggarkan dengan meminimumkan kriteria masing-masing untuk (i) panjang larian median (MRL) dan (ii) jangkaan MRL untuk kes perubahan saiz anjakan yang diketahui dan tidak diketahui. Selain itu, percentil ke-5 dan ke-95 dikira dengan teliti untuk mengukur variabiliti dalam panjang larian. Dalam kajian ini, dua skim VSS yang melibatkan parameter proses yang dianggarkan dikaji dengan secara mendalam, iaitu, saiz sampel pertama adalah sama dengan kecil atau besar. Pelbagai saiz sampel Fasa-I
yang mudah diurus dan magnitud anjakan purata proses digunakan dalam reka bentuk optimum carta yang dicadangkan. Hasil kajian kami menunjukkan bahawa carta VSS
optimum yang dicadangkan berdasarkan parameter proses yang dianggarkan bukan sahaja memberikan tafsiran yang komprehensif kepada pengamal kualiti, tetapi juga memberikan kadar amaran palsu yang rendah. Carta optimum yang dicadangkan diilustrasikan dengan menggunakan data sebenar daripada sebuah syarikat pembuatan substrat wafer.
Kata kunci: Anggaran proses parameter; carta
bersaiz sampel berubah-ubah; panjang larian median; reka bentuk optimum; taburan peratusan panjang larian
RUJUKAN
Castagliola, P., Maravelakis,
P.E. & Figueiredo, F.O. 2016. The EWMA median
chart with estimated parameters. IIE Transactions 48(1): 66-74.
Castagliola, P., Zhang, Y., Costa, A.
& Maravelakis, P. 2012. The variable sample size
chart with estimated parameters. Quality
and Reliability Engineering International 28(7): 687-699.
Chakraborti, S. 2007. Run length
distribution and percentiles: The Shewhart
chart with unknown parameters. Quality
Engineering 19(2): 119-127.
Chong, Z.L., Tan, K.L., Khoo, M.B.C., Teoh, W.L. & Castagliola, P. 2022. Optimal designs of the exponentially
weighted moving average (EWMA) median chart for known and estimated parameters
based on median run length. Communications in Statistics – Simulation and
Computation 51(7): 3660-3684.
Chong, Z.L., Yeong, W.C., Khaw, K.W., Chew,
X.Y. & Teoh, W.L. 2024. Optimal design of the side sensitive group runs
double sampling (SSGRDS)
scheme with estimated process parameters. Transactions
of the Institute of Measurement and Control 47(3): 487-505.
Costa, A.F.B. 1994.
charts with variable sample size. Journal
of Quality Technology 26(3): 155-163.
Epprecht, E.K., Loureiro, L.D.
& Chakraborti, S. 2015. Effect of the amount of
phase I data on the phase II performance of S2 and S control charts. Journal of Quality
Technology 47(2): 139-155.
Gan, F.F. 1993. An optimal design of EWMA control charts based on median
run length. Journal of Statistical Computation and Simulation 45(3-4):
169-184.
Gao, H., Khoo, M.B.C., Teh, S.Y. & Teoh,
W.L. 2019. A study on the median run length performance of the run sum S
control chart. International Journal of Mechanical Engineering and Robotics
Research 8(6): 885-890.
Hu, X.L., Castagliola, P., Sun, J.S. & Khoo,
M.B.C. 2016. The performance of variable sample size
chart with measurement errors. Quality and Reliability Engineering
International 32(3): 969-983.
Jensen, W.A., Jones-Farmer, L.A., Champ, C.W. & Woodall, W.H. 2006.
Effects of parameter estimation on control chart properties: A literature
review. Journal of Quality Technology 38(4): 349-364.
Karimi, H., Khaw, K.W., Chew, X.Y., Chong,
Z.L. & Lim, S.T. 2023. Variable sample size control charts for monitoring
multivariate coefficient of variation based on median run length and expected
median run length. Journal of Science and Technology 15(2): 54-80.
Lee, M.H., Khoo, M.B.C., Haq, A., Wong, D.M.L.
& Chew, X.Y. 2023. Synthetic
charts with known and estimated process
parameters based on median run length and expected median run length. Quality
Technology & Quantitative Management 20(2): 168-183.
Lim, S.L., Yeong, W.C., Chong, Z.L., Gan, C.P. & Khoo, M.B.C. 2024.
A variable sample size side-sensitive synthetic coefficient of variation chart. Transactions of the Institute of Measurement and Control 46(9):
1694-1712.
Montgomery, D.C. 2013. Statistical Quality Control: A Modern
Introduction. 7th ed. New York: John Wiley & Sons.
Mim, F.N., Khoo, M.B.C., Saha, S. & Castagliola, P.
2022. Revised triple sampling
control charts for the mean with known and
estimated process parameters. International Journal of Production Research 60(16):
4911-4935.
Qiao, Y.L., Sun, J.S., Castagliola, P. & Hu, X.L. 2022. Optimal design of
one-sided exponential EWMA charts based on median run length and expected
median run length. Communications in Statistics - Theory and Method 51(9):
2887-2907.
Reynolds Jr., M.R. 1996. Variable-sampling-interval control charts with
sampling at fixed times. IIE Transactions 28(6): 497-510.
Ryan, T.P. 2000. Statistical Methods for Quality Improvement. 2nd
ed. New York: John Wiley & Sons.
Shepherd, D.K., Champ, C.W. & Rigdon, S.E. 2016. Properties of the
Markov-dependent attribute control chart with estimated parameters. Quality
and Reliability Engineering International 32(2): 485-498.
Teh, S.Y., Khoo, M.B.C., Ong,
K.H., Soh, K.L. & Teoh, W.L. 2015. A study on the S2-EWMA chart
for monitoring the process variance based on the MRL performance. Sains Malaysiana44(7):
1067-1075.
Teoh, J.W., Teoh, W.L., Khoo, M.B.C., Tran, K.P. & Lee, M.H. 2024.
An integrated optimal-GICP design for the SPRT control chart with estimated
process parameters based on the average number of observations to signal. Quality
Technology & Quantitative Management 22(1): 84-104.
Teoh, W.L., Chong, J.K., Khoo, M.B.C., Castagliola,
P. & Yeong, W.C. 2017. Optimal designs of the variable sample size
chart based on median run length and expected
median run length. Quality and Reliability Engineering International 33(1):
121-134.
Teoh, W.L., Khoo, M.B.C., Castagliola, P.
& Lee, M.H. 2016. The exact run length distribution and design of the
Shewhart
chart with estimated parameters based on
median run length. Communications in Statistics – Simulation and Computation 45(6): 2081-2103.
Teoh, W.L., Khoo, M.B.C., Castagliola, P.
& Chakraborti, S. 2015. A median run length-based
double sampling
chart with estimated parameters for minimizing
the average sample size. The International Journal of Advanced Manufacturing
Technology 80(1-4): 411-426.
Teoh, W.L., Khoo, M.B.C., Castagliola, P.
& Chakraborti, S. 2014. Optimal designs of the
double sampling
chart with estimated parameters based on
median run length. Computers & Industrial Engineering 67(1):
104-115.
Yeong, W.C., Tan, Y.Y., Lim, S.L., Khaw, K.W.
& Khoo, M.B.C. 2022. A variable sample size run sum coefficient of
variation chart. Quality and Reliability Engineering International 38(4):
1869-1885.
You, H.W., Khoo, M.B.C., Castagliola, P. &
Qu, L. 2016. Optimal exponentially weighted moving average charts with
estimated parameters based on median run length and expected median run length. International Journal of Production Research 54(17): 5073-5094.
Zhou, Q., Zou, C., Wang, Z. & Jiang, W. 2012. Likelihood-based EWMA
charts for monitoring Poisson count data with time-varying sample sizes. Journal
of the American Statistical Association 107(499): 1049-1062.
*Pengarang untuk surat-menyurat; email: wei_lin.teoh@hw.ac.uk